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Exact Coexistence Surfaces Containing Double
Critical Points for a Three-Component Solution
on the Bethe, Honeycomb, and Square Lattices
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A model is considered in which the bonds of a lattice are covered by rodlike
molecules. Neighboring molecular ends interact with orientation-dependent
interactions. The model exhibits closed -loop phase diagrams and double critical
points. Exact coexistence surfaces are calculated for the model on the Bethe,
honeycomb, and square lattices. The nature of the doubling of the critical expo-
nent f near a double critical point is calculated. The behavior of the critical line
in the neighborhood of a double critical point is calculated exactly.

KEY WORDS: Ising model; phase transitions; double critical point; three-
component.

1. INTRODUCTION

Double critical points, points at which two critical points coalesce, have
been extensively studied using lattice models of binary solutions.!~* We
recently introduced an exactly solvable lattice model of a ternary solution
which exhibits a double critical point.””” The model contains molecules of
types AA, BB, and AB. A hydrogen bond can form between neighboring
unlike molecular ends. At a small, constant mole fraction X, of the
amphiphile AB, a closed loop occurs with upper and lower critical solution
points at the temperatures 7, and T,. As the mole fraction of the
amphiphile increases, the closed loop shrinks to a double critical point at
X2 and Tp.

In Section 2 we generalize the model so as to include hydrogen bonds
between two type A molecular ends. In Section 3 we calculate exact closed-
loop phase diagrams for both the original and the generalized model on the
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Bethe, honeycomb, and square lattices. In the generalized version an addi-
tional miscibility gap can occur which has an upper critical point at a tem-
perature which is below that of the lower critical point of the closed loop.
These two critical points can coalesce to give a second double critical point.

As discussed by several authors,”'" at a double critical point the
critical exponents have double their normal values. In Section 4 we con-
sider the nature of the doubling of the exponent §. The difference in the
mole fractions of AA and BB molecules is the order parameter associated
with B in the model. We were unable to observe the doubling of f§ in
Xoa—Xgp, T planes at constant X,y near the double critical point at
which the upper and lower critical points on the closed loop coalesce. Of
course, the closed loop shrinks to a point at this type of double critical
point. However, the doubling of the exponent f is clearly seen in a con-
stant-X ,p plane at the double critical point which occurs in the generalized
model when the lower critical point of the closed loop coincides with the
upper critical point of the low-temperature miscibility gap.

In Section 5 we give exact expressions for the line of critical points for
the model on the Bethe, honeycomb, and square lattices, and we show that
for each of these lattices the critical line in the neighborhood of the double
critical point, which occurs as the closed loops shrink to a point, behaves
as

(TU_ TL)/2TD~A(X§B“XAB)1/2

1
(Ty+Tp)2Tp,~1+ B(X3, — Xyp) M

Exact expressions are obtained for the lattice-dependent constants 4 and B
for each of the three lattices. The behavior given by Eq. (1) is similar to
the behavior which has been found experimentally for some ternary
systems. #-1%)

2. THE GENERALIZED MODEL

We consider a model in which rodlike molecules of types AA, BB, and
AB occupy the bonds of a lattice. Each portion of a type A (type B)
molecular end which faces a neighboring molecular end can be in any one
of g, (qp) different states, only one of which can form a bond with a
neighboring molecular end. A type A molecular end forms a hydrogen
bond with energy 6,5 (or d,,) with a neighboring type B (or type A)
molecular end if both see each other as being in bonding states; otherwise,
molecular ends interact with energies ¢,p, 44, OF &55. This is a generaliza-
tion of the model previously studied”’ in which hydrogen bonds formed
only between unlike molecular ends; ie., d,p =€44. Configurations of
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molecules in the model on the Bethe, honeycomb, and square lattices are
illustrated in Fig. 1.

If we connect all neighboring molecular ends with links, every vertex
in the resulting graph A can be considered to be covered by two graphs,
a graph g, with a link joining the two molecular ends of a single molecule
and a graph g, with links connecting neighboring ends, each from a
different molecule. (If every pair of vertices in g, is connected, A is called
a line graph.)

The grand canonical partition function is given as

EZZ [(gags—1) eisAB/kT_f_e*éAB/kT]NXIL
x [(g2 — 1) e =*a8/KT | g =oas/kTNEL (2 o —emn/kT) N

« (6,4,5‘1;/kT)N§f,)3 (euAA/kT)Nﬂ (ellBB/kT)Nglg (2)

where NY), NY), and N} are the number of neighboring pairs of AB, AA,
and BB ends on g; graphs.

Since vacant sites are not allowed, the chemical potentials psp, taas
and pgp all tend to infinity; however, differences such as pap— pas Or
Uap — Ugp are finite variables. The sum in Eq. (2) is over all configurations,
where a specification of the molecular ends A and B defines a configuration
in the sum.

If N, is the number of type A ends, Ny is the number of type B ends,
and N=N, + Ny, then

N =[G —1) Na— NG 12

_ _ : (3)
N =[(—1)(N—N,)—NR12
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Fig. 1. Molecular configurations on the Bethe lattice, the honeycomb lattice, and the square
lattice. Molecular ends of type A and B are represented by balls of two different sizes.
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The grand canonical partition function, except for a constant factor, can
then be written as

E=Z (esz)Ngg (esz)Mg]; ()N (4)
where
872R=(1—aAB)e*WkT-i—affe‘s/kT 5)
[(1—0aa) +0aae 2]
L= (pan+ pps — 2upp)/4kT (6)
e =(qa/qs) ' [(1—04a) + appe” 77012
xexp{ —[(r—1)(ean — enp) — (itan — Ups) 1/2kT} (7)

Here y=g5p—(€an +€p)/2, £€=0ap— (can+¢pr)/2, and 6=0,a—¢na,
and 0,5 =1/(gaqg) and o, =1/g% are temperature-independent “cross
sections” for bond formation.

If we let S;= +1 (S;= —1) indicate that a site i€ 4 is covered by a
type A (type B) end, then Eq. (4) implies that the model is equivalent to a
spin-1/2 Ising model on A which has a coupling constant L between the
spins on each g, graph, a coupling constant R between interacting spins on
each g, graph, and a field A at each vertex of 4.

3. PHASE DIAGRAMS WITH DOUBLE CRITICAL POINTS

The mole fractions of AA, BB, and AB molecules in the model are
given by the equations

XAA+XBB+XAB:1
|XAA“XBB|=IA (8)
Xag=(1—0,)2

where [,=[{S;>;c 4 is the magnetization and o ,=<5;S;>, c,, Is a
correlation function for the Ising model on the associated lattice 4.2

For the case R>0 and L >0, corresponding to a ferromagnetic Ising
model, £ =0 is a necessary condition for phase separation into AA-rich and
BB-rich phases. The relationships between L, and R, along the line of

critical points have been calculated exactly for the model on the Bethe,
honeycomb, and square lattices."*'*) These relationships are

e 2t = (" —5)/(3e** + 1) Bethe
coth L, = /3 (¢** —1)/(e**+3)  honeycomb 9)
e o= — 1+ ﬁ tanh 2R, square
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For a given R_, phase separation occurs if L> L,. [As is apparent from
Egs. (4) — (6), R is constant at constant 7, and increasing L at constant R
corresponds to decreasing the mole fraction of AB molecules, thus enhanc-
ing the separation.] The minimum value of R, for separation, which is
calculated by letting L, - oo in Eq. (9), is given for each of the lattices as

min R, = (In 5)/4 = 0.402 Bethe
min R, =[In(3+2 \/g)]/4 =0.467 honeycomb (10)
min R, = [In(3+2./2)]/4=0441  square

For the case R>0, L>0, and h=0, closed-form expressions for 7,
and o, as functions of R and L have been calculated for each of the three
lattices.'*™'*) These expressions, given in the Appendix, can be inserted into
Eq. (8) to obtain the entire coexistence surface in temperature—composition
space in terms of the parameters R and L.

The intersection of the coexistence surface with a constant-X,p plane,
which gives the closed-loop phase diagram in the X, — Xpg, 7T plane, is
calculated as follows. We define the reduced parameters 7' =2kT/y,
s= —¢gfy, and u= —J/y. The parameters s and u are fixed for a given
system. For a given 7', we calculate R, from Eq. (5), and then calculate L,
from Eq. (9). These values of R, and L,, together with the closed-form
expression for ¢ ,, are then used to obtain X4z(R., L.). This gives the
point T, and X, =Xpp on the coexistence curve in the X,, — Xgg,
T’ plane which has this constant value of X 5. The following procedure is
used to calculate other points on the coexistence curve in this plane. A
temperature 7'; is chosen and used to calculate a value R,. The parameter
L is then increased from L, until a value L, is found which satisfies
Xap(Ry, L))=X45(R,, L.). The temperature 77 and the equation
| X an — Xggl =1,4(Ry, L;) give the coordinates of a symmetric pair of points
on the coexistence curve in the X, — Xgg, 7' plane which has this
constant value of X, 5. ‘

We calculated several closed-loop phase diagrams for the Bethe,
honeycomb, and square lattices for the case g, =¢z=6, s=1, and u=0.
The case u=0 corresponds to the original model of ref 7 in which
hydrogen bonding occurs only between unlike molecular ends. The phase
diagram for the honeycomb lattice is illustrated in Fig. 2, and the phase
diagram for the square lattice is illustrated in Fig. 3. (The corresponding
diagram for the Bethe lattice is given in Fig. 2 of ref. 7.) The line of critical
points for this case is plotted for each of the three lattices in Fig. 4.

In the above case, for which s=1, hydrogen bonding between A and
B molecular ends promotes mixing at low temperatures. Phase separation

822/60/3-4-5



352 Huckaby and Shinmi

2.0—

[/
N

0.5+ T T
~1.0 ~0.5 0 0.5

——

L

1.0

Xan™ Xug »
Fig. 2. Closed-loop phase diagrams for the model on the honeycomb lattice for the case
s=1, u=0, and g, =g = 6. The value of X, on each of the loops is given as (a) X,z = 0.00,
(b) Xsp=002, and (c) X,p=0.04. The closed loops shrink to a double critical point at
T =4/In35=1125... and X2, =0.045667....
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Fig. 3. Closed-loop phase diagrams for the model on the square lattice for the case s=1,
u=0, and g, =¢gg=06. The value of X,5 on each of the loops is given as (a) X,z = 0.00,
(b) X,p=0.04, and (c) X,5=0.06. The closed loops shrink to a double critical point
at T, =4/ln 35=1.125... and X%, =0074154....
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Fig. 4. The line of critical solution points for the model on the Bethe lattice (B), on the
square lattice (S), and on the honeycomb lattice (H) for the case s=1, u=0, and g, =g5=6.
There is a double critical point at T, =4/In 35=1.125... which corresponds to a maximum
of X45-

into AA-rich and BB-rich phases occurs at moderate temperatures due to
the large number of states corresponding to repulsions between A and B
ends. (These states represent molecular orientations.) As the mole fraction
of AB molecules increases, mixing is enhanced and the closed loops shrink
to a point at a double critical point.

We wish to also consider the possibility of a low-temperature
miscibility gap which has an upper critical point below the temperature of
the lower critical point of the closed loop.®* At a certain value of X,p,
these two critical points can coalesce into a double critical point. In order
to have a miscibility gap at low temperatures, R must remain sufficiently
large as 7' — 0. Equation (5) yields, as 7' -0,

eZR_)qie(h—u)/T’ (11)
B

Hence u > 2s is a necessary condition for a miscibility gap to occur at low
temperatures. This condition implies that a hydrogen bond between two
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type A ends must be energetically stronger than a hydrogen bond between
a type A and a type B end, the latter type of bond promoting mixing at low
temperatures.

In order to have mixing at moderate temperatures, above the
miscibility gap and below the closed loop, the hydrogen bonding between
A and B molecular ends must be more prevelant than the hydrogen bond-
ing between two type A molecular ends. This can be accomplished entropi-
cally if g, > gg. Using these qualitative guides, it is easy to locate cases of
the model which contain a low-temperature miscibility gap in addition to
a closed loop.

We have calculated the coexistence curves for several values of X,y for
the model on the Bethe and honeycomb lattices for the case s=1, u=2.01,
ga =060, and gy =3. The phase diagram for this case on the Bethe lattice
is illustrated in Fig. 5, and the phase diagram for this case on the
honeycomb lattice is illustrated in Fig. 6. The line of critical points for this
case for all three lattices is illustrated in Fig. 7. The two types of double
critical points are present in this case of the model on each of the three
lattices.

In Section 4 we calculate the nature of the critical exponent f near
critical and double critical points for coexistence curves in X,, — Xpg,
T’ planes which have constant values of X,5.

Xaa~ Xgp
Fig. 5. Closed-loop phase diagrams for the model on the Bethe lattice for the case s=1,
u=201, g, =60, and g5 =3. The value of X, on each of the loops is given as (a) X,z =0.12,
(b) Xap=X2;=0.13462, and (c) Xap=0.15. A double critical point occurs in case (b} at
T =0.30059. The closed loops shrink to a double critical point at X%, =0.22857 and
T =0.75533.
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Xan~ Xpg
Fig. 6. Closed-loop phase diagrams for the model on the honeycomb lattice for the case
s=1, u=201, g, =060, and gg=3. The value of X,p on each of the loops is given as (a)
X5 =004, (b) X p=XT;=0.049657, and (c) X,5=0.06. A double critical point occurs in
case (b) at 7 = 0.30059. The closed loops shrink to a double critical point at X5y =0.10588
and T'p=0.75533.

o

o Q.1 0.2 0.3

Fig. 7. The line of critical solution points for the model on the Bethe lattice (B), on the
square lattice (8), and on the honeycomb lattice (H) for the case s =1, u=2.01, g, = 60, and
gp=3. There are two double critical points at temperatures Tj, = 0.75533 and T, =0.30059,
which correspond to a local maximum and a local minimum of X%, respectively.
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4. DOUBLING OF THE CRITICAL EXPONENT 8

As mentioned by several authors,"'!) the critical exponents double
near a double critical point. We wish to calculate explicitly the nature of
the doubling of B near double critical points in the present model. In par-
ticular, for the model on the Bethe and honeycomb lattices, we shall
calculate the behavior of the order parameter |[X,,— Xgg| along
coexistence curves near critical and double critical points in X, — Xpg, T’
planes at constant X,y.

The models on both the Bethe and the honeycomb lattices are related
to an Ising model on these lattices with a coupling constant K. The
constant L is related to K and R as"?

e e+ 1) -2
T etRp 122K

€_2L

(12)

Equation (12) can be substituted into the closed-form expressions for 7,
and o, given in the Appendix to yield I, and ¢, as functions of
y=exp(—4R) and z = exp(—2K). From the expression for 7, we find that
near a critical point

1A~AA(ZC—-Z)K (13)

where ff=1/2 for the Bethe lattice and = 1/8 for the honeycomb lattice.

Since X, =(1—0,)/2, the expression for ¢, as a function of y and z
can be used to obtain functional relationships between Ay =y, — y and
Az=z,—z near critical points along coexistence curves in planes of
constant X ,5. We obtain

Ay~B, Az Bethe
(14)
Ay~ B, Az1n Az honeycomb

The logarithmic behavior is common for two-dimensional lattices">) and
results here as the limiting form of the elliptic integral which occurs in the
expression for ¢ ,. Combining Egs. (13) and (14), we obtain

I,~ B, Ay*f Bethe
dy (15)
I,~B, ( S honeycomb
—In1,

Expanding Eq. (5) near a critical point, we obtain

Ay ~a, A7+ b(47) (16)
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where A= T, —T’. Since two values of T’ give the same value of R near
a double critical point and coincide at 7, at a double critical point, then
R is an extremum at a double critical point. Thus the constant a, in
Eq. (16) vanishes at a double critical point. With this behavior of a, in
mind, we substitute Eq. (16) into Eq. (15) to obtain /, near a normal
critical point as

I,~Bs|T' —T.* Bethe
T —Ti\? (17)
I,~ B <|—_T[Ac—i> honeycomb

and 7, near a double critical point as

Ii~B, [T —T%|%# Bethe
|T' =T, \¥ (18)
IANBB <("_‘m;)£1/5 honeycomb

Expressions (17) are satisfied along coexistence curves in constant-
X ,p planes near all normal critical points illustrated in Figs. 2, 3, 5, and 6.
Expressions (18) are satisfied near the double critical points in Figs. 5 and
6 which join the closed loop to the low-temperature miscibility gap.

Expressions (17) were found to hold in constant-X,g planes near to
but not including the double critical point which occurs when the closed
loop shrinks to a point. This behavior occurs since a critical point on each
closed loop, no matter how small the loop, is not a true double critical
point. Hence a, of Eq. (16), although small, is nonzero. Very near the criti-
cal point, where a,> b_.4,, the behavior of (17) is thus observed. It is
possible there could be a range of T” relatively near 7, at which a, <b,4 1.,
and the behavior of (18) would result there. As X,z — X%y, the range of
T’ at which (18) holds would grow. However, our calculations indicate
that the loop shrinks in size so fast that this range of 7' is never realized.

5. THE CRITICAL LINE NEAR A DOUBLE CRITICAL POINT

In this section we calculate the nature of the critical line in the
neighborhood of the double critical point which occurs when the closed-
loop phase diagram shrinks to a point. For this analysis, we consider only
the case u=0. For each of the three lattices, the critical line for the case
u=0, s=1, and g, =gz =06 is plotted in Fig. 4. Since, as mentioned in
Section 4, R, is an extremum at the double critical point, then Eg. (5)
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can be used to calculate the lattice-independent temperature of the double
critical point as

Th=2(s+1)/In[(1 —04)/(s048)] (19)

For the model on each of the three lattices, the relationships between
R, and L_ given by Eq. (9) can be used to convert previously given?1%)
expressions for X%, as functions of R, and L, into expressions depending
only on the variable y.=exp(—4R,). This yields the following expressions
for the Bethe lattice

Xap=1—=5p)/(4~4y,) (20)
for the honeycomb lattice
Xip=1/2=2(1+4 3y, +6y2)/[3¥*(1 + 3y )(1 - y.)] (21)

and for the square lattice

XCAB:_(TC~1)2+ 2 (Tcw1>mcos‘1<i> (22)

Tc(z_rc) 7T(2—Tc) T+ 1 c

where 7,=./2 (1 — p.)/(1 + y.).
In order to elucidate the behavior of the critical line in the

neighborhood of the double critical point, we note that, letting 4,=
(T.—Tp)/T,, we can use Eq. (5) with u=0 to obtain the expansion

Vo~ ypll +og4%(1—2a,47)] (23)
where, for u=0,
%y =4s/(Th)
oy =1+ (s—1)/(3Tp) (24)
yp=(s+1)26%5[(1 —0ap)/(5045) ]3¢+ D

and T} is given by Eq. {(19). Substitution of Eq. (23) into Eqgs. (20)-(22)
yields

(XQB“XAB)I/ZN(O‘oﬂD)I/Z 47 (1 —ad7) (25)

where i, is a lattice-dependent function of y,. We obtain for the Bethe
lattice

Bo=yp(1—yp)~? (26)
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for the honeycomb lattice

Bo=3"yp[5(1—yp) >—=3(1+3y,) 7] (27)

and for the square lattice

8, = 2—13
P 22— 1) (14 1p)

o (2 —1p) rf)(r§~TD+1)cos‘1(1/‘cD):|
x[l Tpt . + W —1)7

(28)

Expanding 4, as a series in (X5, — X5)"* and then adding and sub-

tracting the equations which result when 7, and T, are substituted for T',
in A, yields the expressions given in Eq. (1), where the constants 4 and B
are given as

A=(aofp)

(29)
B=y, A*

Equation (29) contains as a special case the expression for 4 previously
calculated” for the model on the Bethe lattice for the case u=0 and s= 1.
For the case u=0, s=1, and ¢q, = g5 =6, Eq. (29) yields B= 4% 4=1.527
for the Bethe lattice, 4 = 1.824 for the honeycomb lattice, and 4 = 1.698 for
the square lattice. For the case u =0, s=5 and g, = g5 = 60, Eq. (29) yields
B=1.7314% A =0.8543 for the Bethe lattice, and 4 = 0.9057 for the square
lattice. The honeycomb lattice has no closed loops for this latter case, for
R(T75)=0.457 is less than min R, for the honeycomb lattice as given by
Eq. (10).

Hence, for all values of the parameters for which closed-loop phase
diagrams occur, we have shown that the critical line for the model on the
Bethe, honeycomb, and square lattices exhibits the same type of behavior
in the neighborhood of the double critical point, which occurs as the limit
of closed-loop diagrams, as has been found experimentally for some
systems.®1% As is evident from Egs. (23) and (25), the type of behavior
given by Eq. (1) is also exhibited by the model on any lattice for which X5
is an analytic function of y.. The lattice-dependent constant f,, is then
given as f,= —yp dX45/dy.|,,. Consequently, Eq. (1) probably holds for
the model on three-dimensional lattices as well.

APPENDIX. EXACT EXPRESSIONS FOR /, AND o,

The following are exact expressions for I, and o, for the Bethe,
honeycomb, and square lattices. We denote 4 for the Bethe lattice as 4 .
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The A for the honeycomb lattice is the 3-12 lattice, and A for the square
lattice is the 4-8 lattice. Although used in ref. 13, the formula for 1,4 was
not proved to be exact until later.!'*”

For the model on the Bethe lattice, " where z = exp(—2K),

; _(€4R+3)1/2 (e4R_1)1/2 1 1—3z7 1/2
Ao ey 14207y 1 =22\ 14z
z
= coth 2L —
O =0 sinh2L<1—22>

For the model on the honeycomb lattice, '

(e4R + 3)1/2 (€4R__ 1)1/2 (1 _ K2)1/8
R4 1420 %

Iy =

634, = [ 2n7K(x) sinh 2K — cosh 2K]/(3 sinh 2L) + coth 2L

where
K2=1622(1+2*)(1—2)3 (1-2z%)*

n=(1—z)z*—4z+1)/[n I1—22 (1 —2)*]

K=" (1= k2 sin’ )2 db
(k) , ( sin” 0)

For the model on the square lattice, I, is given as''¥

Ls=[1+e **(cosh2R) 2] 2 (1 —x3)"®
where
kp={[20,1,(1 = )1 + [(L+ 2035+ 1) — 166113
x (1 =222+ 21, 6,(1 +¢3)]

and #; =tanh R and ¢, =tanh L.
For the square lattice, letting

« =4 cosh? 2R sinh? 2R sinh? 2L + 4(cosh? 2R + cosh 2L)?
B = —2sinh? 2R sinh 2L (cosh® 2R + cosh 2L)
5= —sinh? 2R sinh? 2L

G4 is given as''?)

_! _5_15“+ﬂ?£+ﬂ@]
P48 = 4| ouaL " GBAL T 35 oL

R
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where [ is an integral defined in ref. 13, and

ol 2K(k)

do m(oe— 43)

O —4(o+2p) K(k) + 4(x + 4B +49) I, (v, k)

E (e —48)(B +20)

O _ 2(0tf — 206 +4p%) K(k) — 4(o+ 4B +40) IT, (v, k)
% (ot — 48)(B + 26)

/2
I, (v, k):fo (1+vsin?0)~ ' (1 —k?*sin?0)~2 do

K2 = 16(B% — ud)/ (0 ~ 45)?
=4(B +26)/(x—45)
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