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A model is considered in which the bonds of a lattice are covered by rodlike 
molecules. Neighboring molecular ends interact with orientation-dependent 
interactions. The model exhibits closed -loop phase diagrams and double critical 
points. Exact coexistence surfaces are calculated for the model on the Bethe, 
honeycomb, and square lattices. The nature of the doubling of the critical expo- 
nent/3 near a double critical point is calculated. The behavior of the critical line 
in the neighborhood of a double critical point is calculated exactly. 

KEY WORDS: Ising model; phase transitions; double critical point; three- 
component. 

1. I N T R O D U C T I O N  

D o u b l e  cri t ical  points ,  poin ts  at  which two crit ical  poin ts  coalesce, have 
been extensively s tudied using lat t ice models  of b inary  solutions.  (1-6) We 
recently in t roduced  an exact ly solvable  lat t ice mode l  of a t e rnary  so lu t ion  
which exhibi ts  a doub le  cri t ical  point .  (7) The mode l  conta ins  molecules  of 
types AA, BB, and  AB. A hydrogen  b o n d  can form between ne ighbor ing  
unl ike molecu la r  ends. At  a small ,  cons tan t  mole  fract ion XA~ of the 
amphiph i l e  AB, a closed loop  occurs with upper  and lower crit ical solut ion 
po in ts  at  the t empera tu res  Tv and TL. As the mole  fract ion of the 
amphiph i l e  increases, the closed loop  shrinks to a double  cri t ical  po in t  at 
X~B and  TD. 

In Sect ion 2 we generalize the mode l  so as to include hydrogen  bonds  
between two type A molecu la r  ends. In  Sect ion 3 we calculate  exact  closed- 
loop  phase  d i ag rams  for bo th  the or iginal  and  the general ized mode l  on the 
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Bethe, honeycomb, and square lattices. In the generalized version an addi- 
tional miscibility gap can occur which has an upper critical point at a tem- 
perature which is below that of the lower critical point of the closed loop. 
These two critical points can coalesce to give a second double critical point. 

As discussed by several authors, (1 11) at a double critical point the 
critical exponents have double their normal values. In Section 4 we con- 
sider the nature of the doubling of the exponent /~. The difference in the 
mole fractions of AA and BB molecules is the order parameter associated 
with fl in the model. We were unable to observe the doubling of fl in 
XAA--XBB, T planes at constant XAB near the double critical point at 
which the upper and lower critical points on the closed loop coalesce. Of 
course, the closed loop shrinks to a point at this type of double critical 
point. However, the doubling of the exponent fl is clearly seen in a con- 
stant-XAB plane at the double critical point which occurs in the generalized 
model when the lower critical point of the closed loop coincides with the 
upper critical point of the low-temperature miscibility gap. 

In Section 5 we give exact expressions for the line of critical points for 
the model on the Bethe, honeycomb, and square lattices, and we show that 
for each of these lattices the critical line in the neighborhood of the double 
critical point, which occurs as the closed loops shrink to a point, behaves 
a s  

( T v  - TL)/2 TD ~ A (XADB - -  X A B )~/2 

( r ~ +  :rL)/2r~, ~ 1 + B(X2,- X~) 
(1) 

Exact expressions are obtained for the lattice-dependent constants A and B 
for each of the three lattices. The behavior given by Eq. (1) is similar to 
the behavior which has been found experimentally for some ternary 
systems.(S 10) 

2. THE GENERALIZED MODEL 

We consider a model in which rodlike molecules of types AA~ BB, and 
AB occupy the bonds of a lattice. Each portion of a type A (type B) 
molecular end which faces a neighboring molecular end can be in any one 
of qA (qB) different states, only one of which can form a bond with a 
neighboring molecular end. A type A molecular end forms a hydrogen 
bond with energy 6AB (or 6AA) with a neighboring type B (or type A) 
molecular end if both see each other as being in bonding states; otherwise, 
molecular ends interact with energies eAB, eAA, or eBB. This is a generaliza- 
tion of the model previously studied (7) in which hydrogen bonds formed 
only between unlike molecular ends; i.e., (~AA~eAA , Configurations of 
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molecules in the model on the Bethe, honeycomb, and square lattices are 
illustrated in Fig. 1. 

If we connect all neighboring molecular ends with links, every vertex 
in the resulting graph A can be considered to be covered by two graphs, 
a graph g2 with a link joining the two molecular ends of a single molecule 
and a graph gr with links connecting neighboring ends, each from a 
different molecule. (If every pair of vertices in gr is connected, A is called 
a line graph.) 

The grand canonical partition function is given as 

Z= ~ [(qaqn- 1) e eAB/kT'-be bAB/kT] N(~)B 

x [(q2 _ 1) e--*AA/kr+ e--aAA/kT] N~ (q2e--*"B/kT)U~ 

X (c#AB/kT) N~ (c#AA/kT) N~)A (C#BB/kT) u~ (2) 

where ~(i) ~r(J) and ~r(J) are the number of neighboring pairs of AB, AA, " ' A B '  ~ ' A A ~  ~ ' B B  

and BB ends on & graphs. 
Since vacant sites are not allowed, the chemical potentials #AB, #AA, 

and #BB all tend to infinity; however, differences such as /.LAB--#AA or 
#AB-  #BB are finite variables. The sum in Eq. (2) is over all configurations, 
where a specification of the molecular ends A and B defines a configuration 
in the sum. 

If NA is the number  of type A ends, NB is the number of type B ends, 
and N = NA + NB, then 

~(J) - [ ( j -  1 ) NA (s) 
- -  NAB ]/2 ~ '  A A  - -  

(3) 
N(i) [ ( j - 1 ) ( N - N A ) -  (J) BB = NAB]/2 

i 

, , , .  . , %  

Fig. 1. Molecular configurations on the Bethe lattice, the honeycomb lattice, and the square 
lattice. Molecular ends of type A and B are represented by balls of two different sizes. 
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The grand canonical partition function, except for a constant factor, can 
then be written as 

~--~= 2 (8 2R) N(~)B (e 2L) N(2B) (e2h) NA, (4) 

where 

e 2R = (1 - aAB) e-~'/kr+ aAB e-~/kr (5) 
[(1 - -  O'AA ) ~1- O'AAe ,5/kT]1/2 

L = (/~gg + #BB -- 2t-taB)~ 4kT  (6) 

e2h= (qg/qB)r 1 [ ( 1 - - a a a ) + a g A  e ~/kr](~ 1)/2 

x exp{ - [ ( r -  1)(eaA -- eBB) -- (~taa -- #BB)]/2kT} (7) 

Here ? = e A B  - -  (~AA -[- ~BB)/2, 8 = 6AB - -  (/~AA + ~BB)/2, and 6 = 6AA --  ~:AA, 

and 0"AB= 1/(qAqB) and OAA= 1/q 2 are temperature-independent "cross 
sections" for bond formation. 

If we let S~= +1 (S~= - 1 )  indicate that a site i ~ A  is covered by a 
type A (type B) end, then Eq. (4) implies that the model is equivalent to a 
spin-l/2 Ising model on A which has a coupling constant L between the 
spins on each g2 graph, a coupling constant R between interacting spins on 
each gr graph, and a field h at each vertex of A. 

3. P H A S E  D I A G R A M S  W I T H  D O U B L E  CRIT ICAL  P O I N T S  

The mole fractions of AA, BB, and AB molecules in the model are 
given by the equations 

XAA At- XBB ~- XAB = 1 

IXAA -- XBBI = IA (8) 

XAB = (1 -- ~A)/2 

where IA=-I(Sz)i~al is the magnetization and gA=<gigj) i ,  jcg2 is a 
correlation function for the Ising model on the associated lattice A. (12-q4) 

For the case R > 0 and L > 0, corresponding to a ferromagnetic Ising 
model, h = 0 is a necessary condition for phase separation into AA-rich and 
BB-rich phases. The relationships between Lc and Rc along the line of 
critical points have been calculated exactly for the model on the Bethe, 
honeycomb, and square lattices/12 14) These relationships are 

e 2Lc = (e4Rc _ 5 ) / ( 3 e  4Re + 1) Bethe 

coth L~. = x/3  (e 4R~ - 1 )/(e 4R~ + 3 ) honeycomb (9) 

e 2Lc = - -  1 "~ N ~  tanh 2Rc square 
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For a given Rc, phase separation occurs if L > L~.. [-As is apparent from 
Eqs. (4) - (6), R is constant at constant T, and increasing L at constant R 
corresponds to decreasing the mole fraction of AB molecules, thus enhanc- 
ing the separation.] The minimum value of R c for separation, which is 
calculated by letting Lc ~ oo in Eq. (9), is given for each of the lattices as 

min R c = (ln 5)/4 = 0.402 Bethe 

min Rc = [ln(3 + 2 x/~)J/4 = 0.467 honeycomb 

rain R C = [ln(3 + 2 xf2)] /4  = 0.441 square 

(lo) 

For the case R > 0, L > 0, and h = 0, closed-form expressions for IA 
and o- A as functions of R and L have been calculated for each of the three 
lattices.(12 14) These expressions, given in the Appendix, can be inserted into 
Eq. (8) to obtain the entire coexistence surface in temperature~composition 
space in terms of the parameters R and L. 

The intersection of the coexistence surface with a constant-XAB plane, 
which gives the closed-loop phase diagram in the XAA- XBB, T plane, is 
calculated as follows. We define the reduced parameters T '=2kT/7  , 
s = - e / 7 ,  and u = - 3 / 7 .  The parameters s and u are fixed for a given 
system. For  a given T', we calculate R c from Eq. (5), and then calculate L C 
from Eq. (9). These values of Rc and L c, together with the closed-form 
expression for 0-A, are then used to obtain X~B(R c, Lc). This gives the 
point T'c and XAA =XBB on the coexistence curve in the J(AA--XBB, 
T' plane which has this constant value of XAB. The following procedure is 
used to calculate other points on the coexistence curve in this plane. A 
temperature T'I is chosen and used to calculate a value R1. The parameter 
L is then increased from L c until a value L 1 is found which satisfies 
XAB(R1,L1)=XCAB(Rc, Lc). The temperature T'~ and the equation 
IXAA- XBBI = IA(R1, L~) give the coordinates of a symmetric pair of points 
on the coexistence curve in the XAA--XBB, T' plane which has this 
constant value of XAB. 

We calculated several closed-loop phase diagrams for the Bethe, 
honeycomb, and square lattices for the case qA = qB = 6, s = 1, and u = 0. 
The case u = 0  corresponds to the original model of ref. 7 in which 
hydrogen bonding occurs only between unlike molecular ends. The phase 
diagram for the honeycomb lattice is illustrated in Fig. 2, and the phase 
diagram for the square lattice is illustrated in Fig. 3. (The corresponding 
diagram for the Bethe lattice is given in Fig. 2 of ref. 7.) The line of critical 
points for this case is plotted for each of the three lattices in Fig. 4. 

In the above case, for which s = 1, hydrogen bonding between A and 
B molecular ends promotes mixing at low temperatures. Phase separation 

822/60/3-4-S 
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XAA-- XBB 

Fig. 2. Closed-loop phase diagrams for the model on the honeycomb lattice for the case 
s = 1, u = 0, and qA = qB = 6. The value of XAB on each of the loops is given as (a) XAB = 0.00, 
(b) XAB=0.02, and (c) XAB=0.04. The closed loops shrink to a double critical point at 
T~ = 4/ln 35 = 1.125... and X~B = 0.045667 .... 

2.01 
a 

/ b 

1 . 0 -  

c 

0.5 
-1.0 -0 ,5  0 0.5 1,0 

XAA--  XBB 

Fig. 3. Closed-loop phase diagrams for the model on the square lattice for the case s = 1, 
u = 0 ,  and q A = q B = 6 .  The value of XAB on each of the loops is given as (a) XAB=0.00, 
(b) XAB=0.04, and (c) XAB=0.06. The closed loops shrink to a double critical point 
at T~ = 4/ln 35 = 1.125... and X~B = 0.074154 .... 
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Fig. 4. The line of critical solution points for the model on the Bethe lattice (B), on the 
square lattice (S), and on the honeycomb lattice (H) for the case s = 1, u = 0, and qA = qB = 6. 
There is a double critical point at T~ = 4/ln 35 = 1.125... which corresponds to a maximum 
of X~B. 

into AA-r ich  and  BB-rich phases occurs at  m o d e r a t e  t empera tu res  due to 
the large number  of states co r re spond ing  to repuls ions  between A and  B 
ends. (These states represent  molecu la r  or ienta t ions . )  As the mole  fract ion 
of AB molecules  increases, mixing  is enhanced  and  the closed loops  shr ink 
to a po in t  at  a double  cri t ical  point .  

We  wish to also consider  the poss ibi l i ty  of  a low- tempera tu re  
miscibi l i ty  gap  which has an upper  cri t ical  po in t  be low the t empera tu re  of 
the lower  cri t ical  po in t  of the closed loop.  (3'4) At  a cer tain value of X'AB , 

these two crit ical  po in ts  can coalesce into a doub le  cri t ical  point .  In  o rder  
to have a miscibi l i ty  gap  at low tempera tures ,  R must  r emain  sufficiently 
large as T ' - + 0 .  Equa t ion  (5) yields, as T '  ~ 0 ,  

1 2 e 2R ~ - -  e( s-")/r"  (11) 
qB 

Hence  u > 2s is a necessary cond i t ion  for a miscibi l i ty  gap  to occur  at  low 
temperatures .  This condi t ion  implies tha t  a hydrogen  b o n d  between two 
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type A ends must be energetically stronger than a hydrogen bond between 
a type A and a type B end, the latter type of bond promoting mixing at low 
temperatures. 

In order to have mixing at moderate temperatures, above the 
miscibility gap and below the closed loop, the hydrogen bonding between 
A and B molecular ends must be more prevelant than the hydrogen bond- 
ing between two type A molecular ends. This can be accomplished entropi- 
cally if qA >~ qB- Using these qualitative guides, it is easy to locate cases of 
the model which contain a low-temperature miscibility gap in addition to 
a closed loop. 

We have calculated the coexistence curves for several values of XAB for 
the model on the Bethe and honeycomb lattices for the case s = 1, u = 2.01, 
qh = 60 ,  and qB = 3. The phase diagram for this case on the Bethe lattice 
is illustrated in Fig. 5, and the phase diagram for this case on the 
honeycomb lattice is illustrated in Fig. 6. The line of critical points for this 
case for all three lattices is illustrated in Fig. 7. The two types of double 
critical points are present in this case of the model on each of the three 
lattices. 

In Section 4 we calculate the nature of the critical exponent /3 near 
critical and double critical points for coexistence curves in XAA- XBB , 
T' planes which have constant values of XAB. 

2,0- 

T' 

1,5 

1.0- 

0.5- r 

0 
,.o -oi~ o oi~ ,io 

X A A -  XBB 

Fig. 5. Closed-loop phase diagrams for the model on the Bethe lattice for the case s ~  1, 
u = 2.01, qA = 60, and qB = 3. The value of XAB on each of the loops is given as (a) XAB = 0.12, 
(b) XAB=X~B=0.13462,  and (c) XAB=0.15. A double critical point occurs in case (b) at 
T~ =0.30059. The closed loops shrink to a double critical point at X~B =0.22857 and 
T~ = 0.75533. 
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XAA - -  XBB 

Fig. 6. Closed-loop phase diagrams for the model on the honeycomb lattice for the case 
s = 1, u = 2.01, qA = 60, and qB = 3. The value of XAB on each of the loops is given as (a) 
XAB =0.04, (b) XAB=X~B =0.049657, and (c) XAB=0.06. A double critical point occurs in 
case (b) at T5 = 0.30059. The closed loops shrink to a double critical point at XfB = 0.10588 
and T~ = 0.75533. 

0 0. I 0.2 013 
XA B 

Fig. 7. The line of critical solution points for the model on the Bethe lattice (B), on the 
square lattice (S), and on the honeycomb lattice (H) for the case s = 1, u = 2.01, qA = 60, and 
qB = 3. There are two double critical points at temperatures T~ = 0.75533 and T~ = 0.30059, 
which correspond to a local maximum and a local minimum of X~B, respectively. 
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4. D O U B L I N G  OF THE C R I T I C A L  E X P O N E N T  [3 

As mentioned by several authors, (1 H~ the critical exponents double 
near a double critical point. We wish to calculate explicitly the nature of 
the doubling of fl near double critical points in the present model. In par- 
ticular, for the model on the Bethe and honeycomb lattices, we shall 
calculate the behavior of the order parameter ]XAA--XBB 1 along 
coexistence curves near critical and double critical points in XAA- XBB, T' 
planes at constant XAB. 

The models on both the Bethe and the honeycomb lattices are related 
to an Ising model on these lattices with a coupling constant K. The 
constant L is related to K and R as (~2) 

e_ZL = e-2X(e 4R + 1) -- 2 
e 4R -k- 1 - 2e -2/~ (12) 

Equation (12) can be substituted into the closed-form expressions for 14 
and aA given in the Appendix to yield IA and t7 a as functions of 
y = exp(--4R) and z - - e x p ( - 2 K ) .  From the expression for In, we find that 
near a critical point 

1A ~AA(Zc--Z) ~ (13) 

where fl = 1/2 for the Bethe lattice and fl = 1/8 for the honeycomb lattice. 
Since XAB = ( 1 -  aA)/2, the expression for an as a function of y and z 

can be used to obtain functional relationships between Ay = Y c - Y  and 
A z = z c - z  near critical points along coexistence curves in planes of 
constant XAB. We obtain 

dy ~ BI Az Bethe 
(14) 

4 y  ~ B 2 Az In Az honeycomb 

The logarithmic behavior is common for two-dimensional lattices/15) and 
results here as the limiting form of the elliptic integral which occurs in the 
expression for tr A. Combining Eqs. (13) and (14), we obtain 

I.~ ~ B 3 Ay e Bethe 

(15) 
( Ay ~ honeycomb 

14 ~ B4 \ - I n  IAJ 

Expanding Eq. (5) near a critical point, we obtain 

z J y ~  ae AtT+ be(zJ'T) 2 (16)  
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where A~= T'c-  T'. Since two values of T'  give the same value of R near 
a double critical point and coincide at T~ at a double critical point, then 
R is an extremum at a double critical point. Thus the constant a,. in 
Eq. (16) vanishes at a double critical point. With this behavior of ac in 
mind, we substitute Eq. (16) into Eq. (15) to obtain I A near a normal 
critical point as 

l A ~ B s I T' - T'~[ ~ Bethe 

I A ~  B6 (I T'@n T'I~ e (17) IA J honeycomb 

and I A near a double critical point as 

1A ~B7  I T ' -  T~I 2a 

( I T ' - T ~ I  ~2e 
IA ~ B8 \ ( - - in   Tp2J 

Bethe 

honeycomb 
(18) 

Expressions (17) are satisfied along coexistence curves in constant- 
XAB planes near all normal critical points illustrated in Figs. 2, 3, 5, and 6. 
Expressions (18) are satisfied near the double critical points in Figs. 5 and 
6 which join the closed loop to the low-temperature miscibility gap. 

Expressions (17) were found to hold in constant-XAB planes near to 
but not including the double critical point which occurs when the closed 
loop shrinks to a point. This behavior occurs since a critical point on each 
closed loop, no matter how small the loop, is not a true double critical 
point. Hence ac of Eq. (16), although small, is nonzero. Very near the criti- 
cal point, where a~>>bczlr,, the behavior of (17) is thus observed. It is 
possible there could be a range of T'  relatively near Tc' at which a c ~ boA r,, 
and the behavior of (18) would result there. As XAB ~ XADB, the range of 
T'  at which (18) holds would grow. However, our calculations indicate 
that the loop shrinks in size so fast that this range of T'  is never realized. 

5. THE CRITICAL LINE NEAR A DOUBLE CRITICAL POINT 

In this section we calculate the nature of the critical line in the 
neighborhood of the double critical point which occurs when the closed- 
loop phase diagram shrinks to a point. For this analysis, we consider only 
the case u = 0. For  each of the three lattices, the critical line for the case 
u = 0, s = 1, and qA = qu = 6 is plotted in Fig. 4. Since, as mentioned in 
Section 4, R C is an extremum at the double critical point, then Eq. (5) 
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can be used to calculate the lattice-independent temperature of the double 
critical point as 

T~) = 2(s + 1)/ln[(1 - aAB)/(SaAB)] (19) 

For  the model on each of the three lattices, the relationships between 
R c and L~ given by Eq. (9) can be used to convert previously given (~2-.4~ 
expressions for Jf~B as functions of R c and L~ into expressions depending 
only on the variable y~= exp(-4R~).  This yields the following expressions 
for the Bethe lattice 

X~, B = (1 - 5y~)/(4 - 4yc)  (20) 

for the honeycomb lattice 

X~B = 1/2 - 2(1 + 3y~ + 6y2)/[33/2(1 + 3y~.)(1 - Yc)] (21) 

and for the square lattice 

-'u %(2--Z~) + = ( 2 - - V c ) \ z c + l /  COS-~ (22) 

where rc = , , f 2  (1 - yc)/(1 + Yc)- 
In order to elucidate the behavior of the critical line in the 

neighborhood of the double critical point, we note that, letting A t =  
( T c - T o ) / T e ,  we can use Eq. (5) with u = 0  to obtain the expansion 

Yc ~ Yv[ 1 + c%A2( 1 - 2cq A r)]  (23) 

where, for u = 0, 

o~ o = 4s/(  T'D) 2 

~1 ~ -  1 + (s - 1)/(3T•) (24) 

YD -- (s + 1)2 azB[(1 _ aAB)/(S~rAB)]2,/(~+ 1~ 

and T~ is given by Eq. (19). Substitution of Eq. (23) into Eqs. (20) (22) 
yields 

( x ~ . -  x A . )  1/2 ~ (~0/~o) '/2 t~TI (1 - ~I~T)  (25) 

where flo is a lattice-dependent function of YD. We obtain for the Bethe 
lattice 

flO = YO( 1 -- YO) - 2  (26) 
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for the honeycomb lattice 

t i p = 3  3/2yD[-5(1 - y D ) - 2 - 3 ( 1  + 3 y o )  -2]  (27) 

and for the square lattice 

2 - ~  

2 (1 

x I1 - ~ + ~D(2 - vD) + v2(~2 - v~ + 1} c ~ 1 7 6  g ( v ~ -  111/2 j (28t 

Expanding J r  as a series in ( X ~ u - X A B )  1/2 and then adding and sub- 
tracting the equations which result when Te  and T L are substituted for T c 
in A ~ yields the expressions given in Eq. (1), where the constants A and B 
are given as 

A = (CXOflD) 1/2 
(29) 

B = O~I A2 

Equation (29) contains as a special case the expression for A previously 
calculated ~7~ for the model on the Bethe lattice for the case u = 0 and s = 1. 
For the case u = 0, s = 1, and qA ---- q B  --'= 6 ,  Eq. (29) yields B = A 2, A = 1.527 
for the Bethe lattice, A = 1.824 for the honeycomb lattice, and A = 1.698 for 
the square lattice. For  the case u = 0, s = 5 and qA = qB = 60, Eq. (29) yields 
B = 1.731A 2, A = 0.8543 for the Bethe lattice, and A = 0.9057 for the square 
lattice. The honeycomb lattice has no closed loops for this latter case, for 
R(TD)=0.457 is less than rain Rc for the honeycomb lattice as given by 
Eq. (10). 

Hence, for all values of the parameters for which closed-loop phase 
diagrams occur, we have shown that the critical line for the model on the 
Bethe, honeycomb, and square lattices exhibits the same type of behavior 
in the neighborhood of the double critical point, which occurs as the limit 
of closed-loop diagrams, as has been found experimentally for some 
systems.~8 101 As is evident from Eqs. (23) and (25), the type of behavior 
given by Eq. (1) is also exhibited by the model on any lattice for which X~B 
is an analytic function of yc. The lattice-dependent constant tip is then 
given as tip = --.,FD dX~AB/dYc J yo" Consequently, Eq. (1) probably holds for 
the model on three-dimensional lattices as well. 

A P P E N D I X .  EXACT E X P R E S S I O N S  F O R / ^  A N D  or^ 

The following are exact expressions for I A and aA for the Bethe, 
honeycomb, and square lattices. We denote A for the Bethe lattice as A oo. 
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The A for the honeycomb  lattice is the 3-12 lattice, and A for the square 
lattice is the 4-8 lattice. Al though used in ref. 13, the formula  for/4-8 was 
not  proved  to be exact until later. (16'17) 

Fo r  the model  on the Bethe lattice, (m  where z =  e x p ( - 2 K ) ,  

(e4R q-3) 1/2 (e 4 R -  1) I/2 1 _ ~ ( 1 - 3 z ' ]  1/2 

I A ~  - -  (e 4R + 1 + 2e 2L) 1 -- 2z \ 1 + z J 

aA| = coth 2L sinh 2------~ 

Fo r  the model  on the honeycomb  lattice, (12) 

(e 4R 4- 3) 1/2 (e 4R -- 1) a/2 (1 - t s  1/8 

I3-z2= e 4R+ 1 + 2 e  2L 

0-342 = [2t/K(~c) sinh 2 K -  cosh 2K] / (3  sinh 2L) + coth 2L 

where 
x 2 =  16z3(1 + z 3 ) ( 1 - z )  -3 ( l - z 2 )  -3 

r /=  (1 - -  Z 4 ) ( Z 2 - -  4Z q - 1)/[re tl -z21  (1 - z )  4] 

fo j2 K ( k ) =  (1 - k 2  sin2 0) Xj2dO 

For  the model  on the square lattice, I4_s is given as ~ 

1 , 8 =  [1 + e - 2 L ( c o s h 2 R )  2] 1/2 ( 1 - t o 2 )  1/8 

where 

2 =  2 2 4 2 16t4t22] tr s { [ 2 t l / 2 ( 1  - t 2 ) ] 4 +  [(1 + 2 t l t z + t , )  - 

x ( 1 - 2 t 2 t  2 +  t4) 2}[2tl t2(1 + t~ ) ] -4  

and t~ = tanh R and t 2 = tanh L. 
Fo r  the square lattice, letting 

= 4 c o s h  2 2R sinh 2 2R sinh 2 2L + 4(cosh 2 2R + cosh 2L) 2 

fl = - 2  sinh 2 2R sinh 2L (cosh 2 2R + cosh 2L) 

a = - s i n h  2 2R sinh 2 2L 

0"4_ 8 is given a s  (13) 

= l [ O I  ~?c~ . ~?I ~fl ~?I 0 5 ]  
0"4-8 4 Le~ ~ -t- ~--~ ~--Z + ~ }-LI ~ 
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where  I is a n  in tegra l  def ined in  ref, 13, a n d  

01 2K(k)  

0c~ ~ (c ~ -  46)  

0I - 4 ( ~ + 2 f i )  K ( k ) + 4 ( ~ + 4 f l + 4 6 ) H l ( v , k )  

0fi rc(c~ - 46)(f i  + 23) 

01 2(c~fl - 2~6 + 4fl 2) K(k)  - 4fi(c~ + 4fi + 43) H~(v, k)  
06 

HI(V, k)  

k 2 

v 

7t6(c~ - 46)(fl + 26) 

_ ~ / 2  {1 + v sin 2 0) -1  (1 - k  2 sin 2 0) -1/2 dO 
--o0 
= 16(/~ 2 - c~6)/(c~ - 46) 2 

= 4(fi + 26)/(c~ - 45) 

1 +3 
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